Category: Prosthetic Arm

  • S17 Prosthetic Arm: Final Document

    S17 Prosthetic Arm: Final Document

    [av_image src=’/wp-content/uploads/2017/05/TitleArm-1-238×300.png’ attachment=’24415′ attachment_size=’medium’ align=’center’ styling=” hover=” link=” target=” caption=” font_size=” appearance=” overlay_opacity=’0.4′ overlay_color=’#000000′ overlay_text_color=’#ffffff’ animation=’no-animation’][/av_image]

    [av_heading tag=’h3′ padding=’10’ heading=’Spring 2017 Prosthetic Arm: Final Document’ color=” style=’blockquote classic-quote’ custom_font=” size=’24’ subheading_active=’subheading_below’ subheading_size=’15’ custom_class=”]
    The Robot Company | CEO Professor Gary Hill
    [/av_heading]

    [av_textblock size=” font_color=” color=”]

    Blog Post Created by Project Manager | Bianca Esquivel

    Mission, Systems, and Test Engineer | Phuong Tran Electronics and Control Engineer | Mikael Movsisyan

    Design and Manufacturing | Cedric Yannick Mbetga

    [/av_textblock]

    [av_heading tag=’h1′ padding=’10’ heading=’Executive Summary’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=’subheading_below’ subheading_size=’15’ custom_class=”]
    By Project Manager | Bianca Esquivel
    [/av_heading]

    [av_icon_box position=’left’ boxed=” icon=’ue81f’ font=’entypo-fontello’ title=’Project Objective’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    There are 3 main project objectives that address the problem of the customer being born without a right arm and cater to his preferred recreational activities:

    1. Being able to operate a computer mouse by supporting and rotating the wrist that joins the prosthetic hand to the prosthetic arm.
    2. Being able to pick up and drink a cup of water by allowing for proper wrist rotation and supporting the weight of both the prosthetic hand and the cup of water.
      1. Ability to hold more than 8 oz. of water is a plus.
    3. Being able to pick up and eat a chips ahoy cookie by allowing for proper wrist rotation and supporting the weight of both the prosthetic hand and the cookie.

    [/av_icon_box]

    [av_icon_box position=’left’ boxed=” icon=’ue84c’ font=’entypo-fontello’ title=’Mission Profile’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    Mission Profile from Start to Finish:

    • Customer will sit down at a desk in front of a computer with a cup of water and a plate of cookies within the reach of his prosthetic arm
    • The computer will have a game of minesweeper ready to play
    • With the prosthetic arm he will be able to rotate his wrist to properly operate the mouse to play a game of minesweeper and be able to reset the game should he lose or restart the game should he win
    • He will be able to rotate his wrist in order to properly take hold of the cup of water within his reach to drink from at his leisure
    • He will be able to rotate his wrist in order to properly take hold of a chips ahoy cookie within his reach to eat one at a time at his leisure

    [/av_icon_box]

    [av_icon_box position=’left’ boxed=” icon=’ue836′ font=’entypo-fontello’ title=’The Design’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]

    • Switch used to power the arm and hand on/off
    • Comfortable cuff fit for the customer
    • Room for PCB, Battery, and MCU in the limited space of the forearm
    • Room for the servo to rotate the wrist

    [/av_icon_box]

    [av_toggle_container initial=’0′ mode=’accordion’ sort=”]
    [av_toggle title=’Prosthetic Arm Design Image’ tags=”]

    [/av_toggle]
    [/av_toggle_container]

    [av_hr class=’invisible’ height=’20’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_icon_box position=’left’ boxed=” icon=’ue811′ font=’entypo-fontello’ title=’Project Features’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]

    • Wrist Rotation of 90 degrees
    • Personally designed to match the customer’s arm measurements
    • Comfortable arm attachment, unlike the over the shoulder strap that was often used before
    • PLA Material due to project budget
    • EMG (Electromyography) Sensor used to control the movement of the wrist
    • Most of our parts are off the shelf products to keep the budget low, while still keeping the form factor of the prosthetic arm

    [/av_icon_box]

    [av_heading tag=’h1′ padding=’10’ heading=’System Design’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=’subheading_below’ subheading_size=’15’ custom_class=”]
    By Mission, Systems, and Test Engineer | Phuong Tran
    [/av_heading]

    [av_toggle_container initial=’0′ mode=’accordion’ sort=”]
    [av_toggle title=’System Design: Mechanical Perspective’ tags=”]

    Gray: Humeral Suspension Cuff

    Red: Upper Forearm

    Yellow: Lower Forearm

    Green: Wrist
    [/av_toggle]
    [av_toggle title=’System Design: Electrical Perspective’ tags=”]

    [/av_toggle]
    [/av_toggle_container]

    [av_hr class=’invisible’ height=’20’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_icon_box position=’left’ boxed=” icon=’ue820′ font=’entypo-fontello’ title=’System Interface’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    Link to Interface Definitions:

    Prosthetic Arm Interface Definitions

    Link to Interface Control Document:

    Prosthetic Arm Interface Control Document

    Cable Tree:

    Link to Mission Command & Control:

    Prosthetic Arm Mission Command & Control
    [/av_icon_box]

    [av_heading tag=’h1′ padding=’10’ heading=’Electronics Design’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=’subheading_below’ subheading_size=’15’ custom_class=”]
    By Electronics and Control Engineer | Mikael Movsisyan
    [/av_heading]

    [av_tab_container position=’top_tab’ boxed=’border_tabs’ initial=’1′]
    [av_tab title=’Buck Converter’ icon_select=’yes’ icon=’ue856′ font=’entypo-fontello’]

    [/av_tab]
    [av_tab title=’LTSpice Simulation Buck Converter’ icon_select=’yes’ icon=’ue858′ font=’entypo-fontello’]

    [/av_tab]
    [/av_tab_container]

    [av_hr class=’invisible’ height=’20’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_icon_box position=’left’ boxed=” icon=’ue856′ font=’entypo-fontello’ title=’Electronics Custom Parts’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    LT3971-5 Buck Converter from Linear Technology

    Purpose:

    • To satisfy L2.2.1 – Wrist Motion
    • To step down 11.1V to 5V

    Rationale:  

    • Running current MG996R: 500-900mA (from datasheet)
    • Arduino Micro 5V pin rated 200mA
    • VCC fluctuations (Appendix 1.)
    • Voltage regulators (LM7805) tend to overheat

    Reason for specified IC:

    • Relatively cheap
    • >1V logic (Enable Pin)
    • LTSpice simulation showed constant 5V output up to 1.2A

    TI’s LM34 Temperature Sensor

    Purpose:

    • To satisfy L2.4.1 Safety – Temperature
    • Measure analog temperature proportional to Fahrenheit

    Rationale:

    • Above threshold analog input from sensor will cause MCU to power-down

    Reason for specified IC:

    • Can measure required temperature 50oC i.e. 122F (Appendix 4)
    • Used through-hole component in 370L
    • Ease of use

    GRS-4011 Switch

    Purpose:

    • To satisfy L2.4.2 Safety – Kill Switch
    • Switch off supply to MCU (Appendix??)

    Rationale:

    • User can manually shut-down prosthetic arm

    Reason for specified component:

    • Available at hand
    • Current/Voltage rating 16A/125V

    Sparkfun’s 2 DOF IMU with ADXL203 Accelerometer

    Purpose:

    • To satisfy requirement from Con Ops
    • To measure orientation

    Rationale:

    • Wrist can only turn in specified orientation (Appendix 3)

    Reason for component:

    • Available in inventory
    • Analog outputEase of use

    TowerPro MG996R Servo

    Purpose:

    • To satisfy L2.2.2. Motion

    Reason for component:

    • Trade-off-Study
    • Load Test

    [/av_icon_box]

    [av_tab_container position=’top_tab’ boxed=’border_tabs’ initial=’1′]
    [av_tab title=’Firmware: Main Program’ icon_select=’yes’ icon=’ue86b’ font=’entypo-fontello’]

    [/av_tab]
    [av_tab title=’Firmware Flow Chart’ icon_select=’yes’ icon=’ue810′ font=’entypo-fontello’]

    [/av_tab]
    [av_tab title=’FSM States Overview’ icon_select=’yes’ icon=’ue857′ font=’entypo-fontello’]

    [/av_tab]
    [av_tab title=’Sleep Interrupt Firmware’ icon_select=’yes’ icon=’ue86b’ font=’entypo-fontello’]

    [/av_tab]
    [av_tab title=’Sleep Interrupt Flow Chart’ icon_select=’yes’ icon=’ue810′ font=’entypo-fontello’]

    [/av_tab]
    [/av_tab_container]

    [av_hr class=’invisible’ height=’20’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_icon_box position=’left’ boxed=” icon=’ue857′ font=’entypo-fontello’ title=’PCB Schematic’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    Original Design Components

    • Arduino Micro
    • LM34 Temperature Sensor
    • MyoWare EMG Sensor

    Unspecified components

    • Servo
    • Switch
    • LiPo Battery

    Added Components

    • Buck Converter
    • IMU

    [/av_icon_box]

    [av_toggle_container initial=’0′ mode=’accordion’ sort=”]
    [av_toggle title=’Prosthetic Arm Fritzing Diagram’ tags=”]

    [/av_toggle]
    [/av_toggle_container]

    [av_hr class=’invisible’ height=’20’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_icon_box position=’left’ boxed=” icon=’ue810′ font=’entypo-fontello’ title=’Breadboard Model’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]

    • Rapid prototyped 3D design
    • MyoWare EMG sensor & IMU analog readings are used to control servo
    • Light-dependent voltage divider simulates analog reading from a temperature sensor. Used with sleep ISR to power-down MCU.  

    [/av_icon_box]

    [av_toggle_container initial=’0′ mode=’accordion’ sort=”]
    [av_toggle title=’Rapid Prototype Breadboard Layout’ tags=”]

    [/av_toggle]
    [av_toggle title=’Eagle CAD Schematic’ tags=”]

    [/av_toggle]
    [av_toggle title=’PCB Layout’ tags=”][/av_toggle]
    [/av_toggle_container]

    [av_hr class=’invisible’ height=’20’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_heading tag=’h1′ padding=’10’ heading=’Hardware Design’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]

    [av_icon_box position=’left’ boxed=” icon=’ue822′ font=’entypo-fontello’ title=’Attachment Module’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    In order to meet the following requirement

    • L1-1 – Attachment
    • L2-1-Mass Management
    • L2-1-2- over shoulder strap

    The module shown in figure below was created and modeled after the patented humeral cuff displayed below. Most of these parts were designed in solidworks and printed out. However the ¼ metal rods for the humeral cuff were purchased.
    [/av_icon_box]

    [av_toggle_container initial=’0′ mode=’accordion’ sort=”]
    [av_toggle title=’Solidworks Annotated 3D Exploded View’ tags=”]

    [/av_toggle]
    [av_toggle title=’Solidworks Annotated Attachment Module’ tags=”]

    [/av_toggle]
    [av_toggle title=’Humeral Suspension Cuff Module’ tags=”]

    [/av_toggle]
    [av_toggle title=’Humeral Suspension Cuff Mounted on Socket’ tags=”]

    [/av_toggle]
    [av_toggle title=’Cuff Sitting on Humerus Bone’ tags=”]

    [/av_toggle]
    [/av_toggle_container]

    [av_hr class=’invisible’ height=’20’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_icon_box position=’left’ boxed=” icon=’ue855′ font=’entypo-fontello’ title=’Wrist Rotation Mechanical Design’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    The rotation of the wrist is controlled by the servo MG996R which was located in the lower arm. The 90 degree turn (L2-2-1 requirement) of the wrist was met by applying the appropriate gear ration of 17/11= 1.55.

    Two gears are designed:

    • Driven gear with 17 teeth
    • Driver gear with 11 teeth

    To avoid the prosthetic hand wire bundle hanging out of the arm, a hole was drawn through the driven gear such that the bundle could travel through it.


    [/av_icon_box]

    [av_toggle_container initial=’0′ mode=’accordion’ sort=”]
    [av_toggle title=’Driven Gear and Driver Gear’ tags=”]

    [/av_toggle]
    [av_toggle title=’Servo Used’ tags=”]

    [/av_toggle]
    [av_toggle title=’Cable Tree Hand & Arm Integration’ tags=”]

    [/av_toggle]
    [/av_toggle_container]

    [av_hr class=’invisible’ height=’20’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_icon_box position=’left’ boxed=” icon=’ue815′ font=’entypo-fontello’ title=’Mechanical Connection’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    The prosthetic arm was assembled after final printing. This will be done using M3 screw and hex nuts. Hence hex houses were modeled in solidworks to house these nuts. Some of the advantages of these houses are that they:

    • Allow assembly with less maneuvering
    • Allow for easier disassembly of the parts
    • Are a better fastening method

    In addition, the the wrist is modeled in a way that allows the prosthetic hand to attach to the prosthetic arm via screws
    [/av_icon_box]

    [av_toggle_container initial=’0′ mode=’accordion’ sort=”]
    [av_toggle title=’Hex Nut House’ tags=”]

    [/av_toggle]
    [av_toggle title=’Solidworks Final Wrist Design’ tags=”]

    [/av_toggle]
    [/av_toggle_container]

    [av_hr class=’invisible’ height=’20’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_icon_box position=’left’ boxed=” icon=’ue808′ font=’entypo-fontello’ title=’Verification Tests’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    by Mission, Systems, and Test Engineer | Phuong Tran

    Link to Final Verification Tests for Prosthetic Arm:

    Verification Tests

    Link to V&V Report for Prosthetic Arm:

    V&V Report Prosthetic Arm
    [/av_icon_box]

    [av_heading tag=’h1′ padding=’10’ heading=’System Resource Reports ‘ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=’subheading_below’ subheading_size=’15’ custom_class=”]
    by Mission, Systems, and Test Engineer | Phuong Tran
    [/av_heading]

    [av_icon_box position=’left’ boxed=” icon=’ue8a9′ font=’entypo-fontello’ title=’Power Allocation’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]

    [/av_icon_box]

    [av_icon_box position=’left’ boxed=” icon=’ue8d3′ font=’entypo-fontello’ title=’Mass Allocation’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]

    [/av_icon_box]

    [av_icon_box position=’left’ boxed=” icon=’ue814′ font=’entypo-fontello’ title=’Cost Allocation’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]

    [/av_icon_box]

    [av_icon_box position=’left’ boxed=” icon=’ue8c5′ font=’entypo-fontello’ title=’Burndown’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    by Project Manager | Bianca Esquivel


    [/av_icon_box]

    [av_heading heading=’Project Resources’ tag=’h1′ style=’blockquote modern-quote’ size=’20’ subheading_active=” subheading_size=’15’ padding=’10’ color=” custom_font=”][/av_heading]

    [av_textblock size=” font_color=” color=”]
    Project Video: Prosthetic Limb 2017 Project Video

    CDR PowerPoint: Prosthetic Arm CDR PPT

    PDR PowerPoint: Prosthetic Arm PDR PPT

    Project Libre & Excel Burndown: Prosthetic Limb Schedule & Burndown

    Verification & Validation Report: V&V Prosthetic Arm

    Solidworks Files: Mechanical Blog Post 1Mechanical Blog Post 2Mechanical Blog Post 3

    Eagle CAD Files: Electrical Blog Post

    Arduino Code: Software Blog Post

    The Entire 400D Prosthetic Limb Folder: Prosthetic Limb 2017 Group Folder
    [/av_textblock]

  • S17 Prosthetic Limb: Verification and Validation Reports

    S17 Prosthetic Limb: Verification and Validation Reports

    [av_image src=’/wp-content/uploads/2017/05/VV-1-300×153.png’ attachment=’25493′ attachment_size=’medium’ align=’center’ styling=” hover=” link=” target=” caption=” font_size=” appearance=” overlay_opacity=’0.4′ overlay_color=’#000000′ overlay_text_color=’#ffffff’ animation=’no-animation’][/av_image]

    [av_heading heading=’Spring 2017 Prosthetic Limb: Verification and Validation Reports’ tag=’h3′ style=’blockquote classic-quote’ size=’24’ subheading_active=’subheading_below’ subheading_size=’15’ padding=’10’ color=” custom_font=”]
    The Robot Company | CEO Professor Gary Hill
    [/av_heading]

    [av_textblock size=” font_color=” color=”]

    Blog Post Created by Project Manager | Bianca Esquivel

    Prosthetic Arm Verification and Validation Report Written by Mission, Systems, and Test Engineer | Phuong Tran

    Prosthetic Hand Verification and Validation Report Written by Mission, Systems, and Test Engineer | Chris Bautista

    [/av_textblock]

    [av_heading heading=’Reports’ tag=’h1′ style=’blockquote modern-quote’ size=’20’ subheading_active=” subheading_size=’15’ padding=’10’ color=” custom_font=”][/av_heading]

    [av_textblock size=” font_color=” color=”]
    Link to Verification and Validation Report for the Prosthetic Arm:

    V&V Prosthetic Arm

    V&V Test Plan Prosthetic Arm

    Link to Verification and Validation Report for the Prosthetic Hand:

    V&V Prosthetic Hand

    With a Waiver Included at the End of the V&V Report for the Prosthetic Hand addressing the use of PLA Plastic to 3D print the Prosthetic Arm and Hand.
    [/av_textblock]

  • S17 Prosthetic Arm: Power Allocation Report

    S17 Prosthetic Arm: Power Allocation Report

    [av_image src=’/wp-content/uploads/2017/05/PwrRArm-5-300×125.png’ attachment=’25488′ attachment_size=’medium’ align=’center’ styling=” hover=” link=” target=” caption=” font_size=” appearance=” overlay_opacity=’0.4′ overlay_color=’#000000′ overlay_text_color=’#ffffff’ animation=’no-animation’][/av_image]

    [av_heading heading=’Spring 2017 Prosthetic Arm: Power Allocation Report’ tag=’h3′ style=’blockquote classic-quote’ size=’24’ subheading_active=’subheading_below’ subheading_size=’15’ padding=’10’ color=” custom_font=”]
    The Robot Company | CEO Professor Gary Hill
    [/av_heading]

    [av_textblock size=” font_color=” color=”]

    Blog Post Created by Project Manager | Bianca Esquivel

    Project Documentation Written by Mission, Systems, and Test Engineer | Phuong Tran

    [/av_textblock]

    [av_heading heading=’Preliminary Information’ tag=’h1′ style=’blockquote modern-quote’ size=’20’ subheading_active=” subheading_size=’15’ padding=’10’ color=” custom_font=”][/av_heading]

    [av_icon_box position=’left’ boxed=” icon=’ue84b’ font=’entypo-fontello’ title=’Introduction’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    This report is created in response to requirements

    L1-3: The Prosthetic Arm shall be able to operate for at least 16 minutes and 39 seconds (999 seconds) which is the duration allowed to play a game of minesweeper.

    L2.3.1: The capacity of the battery shall be more than 943 mAh

    In this report, we seek to understand the source of each quantity placed in the report.
    [/av_icon_box]

    [av_icon_box position=’left’ boxed=” icon=’ue856′ font=’entypo-fontello’ title=’Materials’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    Refer to Battery Discharge Test and Servo Load Test

    Link to Battery Discharge Test

    Link to Servo Load Test

    Link to Hand Current Draw

    Link to Arduino Micro Specs
    [/av_icon_box]

    [av_heading heading=’Background’ tag=’h1′ style=’blockquote modern-quote’ size=’20’ subheading_active=” subheading_size=’15’ padding=’10’ color=” custom_font=”][/av_heading]

    [av_textblock size=” font_color=” color=”]
    Battery Discharge Test and Servo Load Test

    Link to Battery Discharge Test

    Link to Servo Load Test
    [/av_textblock]

    [av_toggle_container initial=’0′ mode=’accordion’ sort=”]
    [av_toggle title=’Power Resource Report’ tags=”]

    [/av_toggle]

    [/av_toggle_container]

    [av_hr class=’invisible’ height=’25’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_heading heading=’Test and Evaluation’ tag=’h1′ style=’blockquote modern-quote’ size=’20’ subheading_active=” subheading_size=’15’ padding=’10’ color=” custom_font=”][/av_heading]

    [av_textblock size=” font_color=” color=”]
    Battery Discharge Test and Servo Load Test

    Link to Battery Discharge Test

    Link to Servo Load Test
    [/av_textblock]

    [av_heading heading=’Data’ tag=’h1′ style=’blockquote modern-quote’ size=’20’ subheading_active=” subheading_size=’15’ padding=’10’ color=” custom_font=”][/av_heading]

    [av_textblock size=” font_color=” color=”]
    In this section, we seek to understand the reason for each quantity placed in the power report

    B3: This value was from the last semester measured current draw of the hand

    Link to Hand Current Draw

    D3: This uncertainty was 20% because the MST engineer was not present when the measured value was taken

    E3: This high margin corresponds to the high uncertainty percentage

    B4: This value was calculated by 20mA (current draw from each I/O port) multiply by 20 (# of I/O ports)

    Link to Arduino Micro Specs

    D4: this low uncertainty results from the values were taken from Arduino manufacturer website

    E4: similarly, low uncertainty percentage corresponds with low margin

    B5: This value was taken from the maximum current draw of the 5V pin of the Arduino

    Link to Arduino Micro Specs

    C5: This value was taken from the result of the Servo Load Test

    Link to Servo Load Test

    D5: This uncertainty is low because we have done the test. Even though the expect current is different from the measured value, we have changed our PCB layout accordingly. In addition, the project allocation value is determined with this difference in mind.

    E5: This low margin is the result of low margin percentage

    E12: This is the spec from the battery chosen since we performed the Battery Discharge Test

    E13: we total the margin in mA

    E14: we total the expected current in mA

    E15: the formula for contingency = E12 – E13 – E14

    F12: This value is the capacity of the battery chosen from the Battery Discharge Test

    F13, F14: These values are computed by multiplying mA value with duration of the mission (0.2775 hours – requirement L1.3)

    F15: the formula for contingency = F12 – F13 – F14
    [/av_textblock]

    [av_heading heading=’Conclusion’ tag=’h1′ style=’blockquote modern-quote’ size=’20’ subheading_active=” subheading_size=’15’ padding=’10’ color=” custom_font=”][/av_heading]

    [av_textblock size=” font_color=” color=”]
    Due to the allocation value, we pick the 11.1V 2200mAh 3S LiPo because this battery will satisfy L1.3 and L2.3.1. This decision is the result of Battery Discharge Test.

    Link to Battery Discharge Test
    [/av_textblock]

  • S17 Prosthetic Arm: Critical Program Module/Firmware

    S17 Prosthetic Arm: Critical Program Module/Firmware

    [av_image src=’/wp-content/uploads/2017/05/SetUp1-2-300×225.png’ attachment=’25476′ attachment_size=’medium’ align=’center’ styling=” hover=” link=” target=” caption=” font_size=” appearance=” overlay_opacity=’0.4′ overlay_color=’#000000′ overlay_text_color=’#ffffff’ animation=’no-animation’][/av_image]

    [av_heading heading=’Spring 2017 Prosthetic Arm: Critical Program Module/Firmware’ tag=’h3′ style=’blockquote classic-quote’ size=’24’ subheading_active=’subheading_below’ subheading_size=’15’ padding=’10’ color=” custom_font=”]
    The Robot Company | CEO Professor Gary Hill
    [/av_heading]

    [av_textblock size=” font_color=” color=”]

    Blog Post Created by Project Manager | Bianca Esquivel

    Project Code Written By Electronics and Control Engineer | Mikael Movsisyan

    [/av_textblock]

    [av_heading heading=’Preliminary Information’ tag=’h1′ style=’blockquote modern-quote’ size=’20’ subheading_active=” subheading_size=’15’ padding=’10’ color=” custom_font=”][/av_heading]

    [av_icon_box position=’left’ boxed=” icon=’ue864′ font=’entypo-fontello’ title=’Design Objective’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    Purpose: To satisfy requirement L2.2.1 Wrist Rotation (System) – The prosthetic arm shall provide a 90 degree of rotation at the wrist (clockwise and anticlockwise) and requirement L2.2.2 EMG (System) – The Prosthetic Arm shall acquire input from at least one electromyographic sensor that detects electromyogram (EMG) signals from muscles in user’s upper arm or stump.
    [/av_icon_box]

    [av_heading heading=’Iterative Coding Process’ tag=’h1′ style=’blockquote modern-quote’ size=’20’ subheading_active=” subheading_size=’15’ padding=’10’ color=” custom_font=”][/av_heading]

    [av_icon_box position=’left’ boxed=” icon=’ue8bd’ font=’entypo-fontello’ title=’First Iteration’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    The first step was to control the action of a motor using an analog sensor and a MCU. A simple light-dependent voltage divider circuit was built with a photoresistor and the voltage across the photoresistor was fed as analog input to the MCU. A threshold analog input was selected, above which the motor would be turned. Below this value the motor was turned off. Below is the image of the set-up.

    The Arduino Code can be found at this link:

    https://drive.google.com/open?id=0B6kkqAMmUffrWFotYkRKSmp3S0U

    The conclusion from this simple test was that rotation of the wrist, using a servo as the actuator, can be controlled by an analog sensor such as the MyoWare EMG sensor. A threshold value (representing muscle contraction) can be selected above which the wrist will turn.
    [/av_icon_box]

    [av_toggle_container initial=’0′ mode=’accordion’ sort=”]
    [av_toggle title=’First Iteration Set Up’ tags=”]

    [/av_toggle]

    [/av_toggle_container]

    [av_hr class=’invisible’ height=’25’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_icon_box position=’left’ boxed=” icon=’ue8be’ font=’entypo-fontello’ title=’Second Iteration’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    The code was slightly altered to control a servo base on the analog input from the MyoWare EMG sensor. The Arduino code can be found at the link below:

    https://drive.google.com/open?id=0B6kkqAMmUffrajQ1QXZNekFTWXM

    This code was used to rotate the wrist of the rapid-prototyped arm model as shown below. With this code the wrist will turn clockwise when muscle is contracted and return to its original position when the muscle is relaxed.
    [/av_icon_box]

    [av_toggle_container initial=’0′ mode=’accordion’ sort=”]
    [av_toggle title=’Second Iteration Set Up’ tags=”]

    [/av_toggle]

    [/av_toggle_container]

    [av_hr class=’invisible’ height=’25’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_icon_box position=’left’ boxed=” icon=’ue8bf’ font=’entypo-fontello’ title=’Third and Final Iteration’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    Finite state machine code was added to ensure that wrist rotation was triggered by immediate muscle relaxation following muscle contraction had to occur to rotate wrist. The FSM was added to prevent wrist rotation when the muscle is contracted accidentally e.g. when the arm is bent. The link to the FSM code is shown below.

    https://drive.google.com/open?id=0B6kkqAMmUffrbTRQZnJfYzloUjg

    Purpose: To meet requirement L1-4 Safety – The operating temperature of the prosthetic arm shall not exceed 50 degrees C for safety reasons.

    Verification: Heat the sensor to 50oC and see if the MCU will shut itself down.

    In compliance with this requirement a power down sleep ISR code was obtained from the Arduino website. The MCU will be put to sleep whenever the analog input from the temperature sensor exceeds a threshold value corresponding to 50 degrees Celsius. A conditional statement was introduced such that the MCU will be put to sleep whenever the condition is met. The code for the sleep interrupt with the conditional statement can be found at the link below:

    https://drive.google.com/open?id=0B6kkqAMmUffrSnEwSjlTWTBCODQ
    [/av_icon_box]

  • S17 Prosthetic Arm: Custom PCB Layout Design

    S17 Prosthetic Arm: Custom PCB Layout Design

    [av_image src=’/wp-content/uploads/2017/05/PCB-Final-Layout-300×187.png’ attachment=’25420′ attachment_size=’medium’ align=’center’ styling=” hover=” link=” target=” caption=” font_size=” appearance=” overlay_opacity=’0.4′ overlay_color=’#000000′ overlay_text_color=’#ffffff’ animation=’no-animation’][/av_image]

    [av_heading heading=’Spring 2017 Prosthetic Arm: Custom PCB Layout Design’ tag=’h3′ style=’blockquote classic-quote’ size=’24’ subheading_active=’subheading_below’ subheading_size=’15’ padding=’10’ color=” custom_font=”]
    The Robot Company | CEO Professor Gary Hill
    [/av_heading]

    [av_textblock size=” font_color=” color=”]

    Blog Post Created By Project Manager | Bianca Esquivel

    Project Design Created by Electronics and Control Engineer | Mikael Movsisyan and Manufacturing and Design Engineer | Cedric Yannick Mbetga

    [/av_textblock]

    [av_heading heading=’Preliminary Information’ tag=’h1′ style=’blockquote modern-quote’ size=’20’ subheading_active=” subheading_size=’15’ padding=’10’ color=” custom_font=”][/av_heading]

    [av_icon_box position=’left’ boxed=” icon=’ue864′ font=’entypo-fontello’ title=’Design Objective’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    Aim: To satisfy L1.5 Custom PCB Requirement – The prosthetic arm shall implement a custom printed circuit board (PCB) that incorporates a complexity of design, implementing at least 2 layers, and includes the use surface mount components.

    In compliance with with Requirement L1.7 Length – The prosthetic arm shall not exceed the length of 26 cm (User’s arm length – measured in class), the Prosthetic Limb group (following approval from Professor Hill) has decided to design and layout a single PCB board. This PCB board will host the circuit components, according to the electronic design requirements of the Prosthetic Arm and Prosthetic Hand groups. The PCB layout was done in EagleCAD.   
    [/av_icon_box]

    [av_icon_box position=’left’ boxed=” icon=’ue856′ font=’entypo-fontello’ title=’Materials’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    Eagle CAD Software
    [/av_icon_box]

    [av_heading heading=’Iterations of the PCB Layout’ tag=’h1′ style=’blockquote modern-quote’ size=’20’ subheading_active=” subheading_size=’15’ padding=’10’ color=” custom_font=”][/av_heading]

    [av_icon_box position=’left’ boxed=” icon=’ue8bd’ font=’entypo-fontello’ title=’First Iteration’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    This Prosthetic Arm PCB consists of a LM34 analog Temperature Sensor connected to an analog pin of the Arduino Micro MCU, LT3975-1 Buck Converter, one 2-pin and four 3-pin JSTs, two terminal blocks, a 220 Ohm and a 49.9kOhm resistor, 0.47uF, 4.7uF and 22uF capacitors, a SLF7045 inductor, and a BAT54 Schottky diode.

    The original trace widths were 0.3mm. The PCB additionally has a top GND plane (Red) and a bottom power plane from the 5V of the Arduino Micro MCU, as shown below.

    The LT3975-1 Buck Converter IC is used to step down input voltage of 11.1V to 5V to drive the servos. The servos (hand and arm) will be connected to of the 3-pin JSTs. The other two 3-pin JSTs are used as a back-up in the case of faulty operation of the Buck during testing and mission run. The 2-pin JST is to be connected to an LED, which will be secured on the outside of the arm to notify the user when there is power supplied i.e. ON. The LM34 is connected to an analog pin of the MCU to which it provides analog readings of temperature.
    [/av_icon_box]

    [av_toggle_container initial=’0′ mode=’accordion’ sort=”]
    [av_toggle title=’PCB Layout 1st Iteration’ tags=”]

    [/av_toggle]
    [av_toggle title=’GND Plane PCB Layout’ tags=”]

    [/av_toggle]
    [/av_toggle_container]

    [av_hr class=’invisible’ height=’25’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_icon_box position=’left’ boxed=” icon=’ue8be’ font=’entypo-fontello’ title=’Second Iteration’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    In the second iteration of the pcb circuit layout protection elements were introduced, namely the 3A hold current polyfuse from the input source to the motor drivers and the 1.25A hold current polyfuse from the input source to the buck converter LT3971-5. In addition, a series of vias were added around the buck converter to act as a heat sink. Finally, a 10pF decoupling capacitor was added to the LM34 (per the datasheet layout instructions) and a 10uF decoupling capacitors were added at the source and at the input to the motor drivers.
    [/av_icon_box]

    [av_toggle_container initial=’0′ mode=’accordion’ sort=”]
    [av_toggle title=’PCB Layout 2nd Iteration’ tags=”]

    [/av_toggle]

    [/av_toggle_container]

    [av_hr class=’invisible’ height=’25’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_icon_box position=’left’ boxed=” icon=’ue8bf’ font=’entypo-fontello’ title=’Third and Final Iteration’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    Following recommendations from Fabian Suske and Professor Hill, additional circuit protection components were added to the final circuit schematic, namely polyfuses and decoupling capacitors at the input source and to both IC inputs. The schematic above shows the schematic of the Prosthetic Arm group only.

    Below is the link to the Prosthetic Limb (Arm + Hand PCB)

    https://drive.google.com/open?id=0B6kkqAMmUffraGpHX0t5Mno0YnM
    [/av_icon_box]

    [av_toggle_container initial=’0′ mode=’accordion’ sort=”]
    [av_toggle title=’Final PCB Circuit Schematic’ tags=”]

    [/av_toggle]
    [av_toggle title=’Final PCB Layout’ tags=”]

    [/av_toggle]
    [/av_toggle_container]

    [av_hr class=’default’ height=’50’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′]

  • S17 Prosthetic Arm: Gear Test

    S17 Prosthetic Arm: Gear Test

    [av_image src=’/wp-content/uploads/2017/05/TitleGears-5-240×300.png’ attachment=’25339′ attachment_size=’medium’ align=’center’ styling=” hover=” link=” target=” caption=” font_size=” appearance=” overlay_opacity=’0.4′ overlay_color=’#000000′ overlay_text_color=’#ffffff’ animation=’no-animation’][/av_image]

    [av_heading tag=’h3′ padding=’10’ heading=’Spring 2017 Prosthetic Arm: Gear Test’ color=” style=’blockquote classic-quote’ custom_font=” size=’24’ subheading_active=’subheading_below’ subheading_size=’15’ custom_class=”]
    The Robot Company | CEO Professor Gary Hill
    [/av_heading]

    [av_textblock size=” font_color=” color=”]

    Blog Post Created by Project Manager | Bianca Esquivel

    Project Test Executed by Manufacturing and Design Engineer | Cedric Yannick Mbetga

    [/av_textblock]

    [av_heading tag=’h1′ padding=’10’ heading=’Preliminary Information’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]

    [av_icon_box position=’left’ boxed=” icon=’ue864′ font=’entypo-fontello’ title=’Test Objective’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    Purpose: The rotation of the wrist is controlled by the servo, MG996R, which will be located in the lower arm. The 90 degree turn (L2-2-1 requirement) of the wrist is met by applying the appropriate gear ration of 17/11= 1.55.

    Two gears are designed:

    • Driven gear with 17 teeth
    • Driver gear with 11 teeth

    To avoid the prosthetic hand wire bundle hanging out from the connection of the hand and the arm, a hole is drawn through the driven gear such that the wire bundle can be placed through it and so the wires are able to reach the PCB in the arm.

    Aim: Verify that the the two designed and printed gears will rotate accordingly to the gear ratio and make the 90 degree turn. .
    [/av_icon_box]

    [av_icon_box position=’left’ boxed=” icon=’ue856′ font=’entypo-fontello’ title=’Materials’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    Solidworks

    3D Printer

    3mm Blue PLA
    [/av_icon_box]

    [av_heading tag=’h1′ padding=’10’ heading=’Test Set Up’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]

    [av_textblock size=” font_color=” color=”]
    Solidworks Design: Driver Gear

    Solidworks Design: Driven Gear
    [/av_textblock]

    [av_heading tag=’h1′ padding=’10’ heading=’Results’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]

    [av_textblock size=” font_color=” color=”]
    The gears have been printed out and they are able to be used together to be controlled by the servo.
    [/av_textblock]

    [av_toggle_container initial=’0′ mode=’accordion’ sort=”]
    [av_toggle title=’Gears’ tags=”]

    [/av_toggle]

    [/av_toggle_container]

    [av_hr class=’invisible’ height=’25’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_heading tag=’h1′ padding=’10’ heading=’Conclusion’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]

    [av_textblock size=” font_color=” color=”]
    The gears of the design to rotate the wrist a full 90 degrees are able to work to fulfill the requirements listed above.
    [/av_textblock]

  • S17 Prosthetic Arm: Attachment Module Test

    S17 Prosthetic Arm: Attachment Module Test

    [av_image src=’/wp-content/uploads/2017/05/HumCuff.png’ attachment=’25311′ attachment_size=’full’ align=’center’ styling=” hover=” link=” target=” caption=” font_size=” appearance=” overlay_opacity=’0.4′ overlay_color=’#000000′ overlay_text_color=’#ffffff’ animation=’no-animation’][/av_image]

    [av_heading tag=’h3′ padding=’10’ heading=’Spring 2017 Prosthetic Arm: Attachment Module Test’ color=” style=’blockquote classic-quote’ custom_font=” size=’24’ subheading_active=’subheading_below’ subheading_size=’15’ custom_class=”]
    The Robot Company | CEO Professor Gary Hill
    [/av_heading]

    [av_textblock size=” font_color=” color=”]

    Blog Post created by Project Manager | Bianca Esquivel

    Project Test Executed by Mission, Systems, and Test Engineer | Phuong Tran and Manufacturing and Design Engineer | Cedric Yannick Mbetga

    [/av_textblock]

    [av_heading tag=’h1′ padding=’10’ heading=’Preliminary Information’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]

    [av_icon_box position=’left’ boxed=” icon=’ue864′ font=’entypo-fontello’ title=’Test Objective’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    Purpose: In order to meet the following requirement

    • L1-1 – Attachment
    • L2-1-Mass Management
    • L2-1-2- No over shoulder strap

    The module shown in figure below will be modeled following the patent shown by the pictures to the right

    However the ¼ metal rod will be purchased

    Aim: verify that the designed and printed humerus cuff system can be properly attached.
    [/av_icon_box]

    [av_icon_box position=’left’ boxed=” icon=’ue856′ font=’entypo-fontello’ title=’Materials’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    Metal Rods

    3mm Gold PLA

    3D Printer

    2.5 pound weight
    [/av_icon_box]

    [av_heading tag=’h1′ padding=’10’ heading=’Test Set Up’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]

    [av_textblock size=” font_color=” color=”]
    Push the metal rods into the PLA golden cuff pieces that hold on the humeral bone. Place the cuff on the humeral bone of an individual and tie a 2.5 pound weight to the cuff to see if it can sustain this mass while still holding on to the arm.

    Solidworks Design: Humeral Cuff

    Solidworks Design: Condyle Piece
    [/av_textblock]

    [av_toggle_container initial=’0′ mode=’accordion’ sort=”]
    [av_toggle title=’Humeral Cuff with 2.5lb Weight’ tags=”]

    [/av_toggle]

    [/av_toggle_container]

    [av_hr class=’invisible’ height=’25’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_heading tag=’h1′ padding=’10’ heading=’Results’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]

    [av_textblock size=” font_color=” color=”]
    The Humeral Cuff was crafted and proven to be able to stay attached to the arm while carrying a 2.5 lb weight.
    [/av_textblock]

    [av_toggle_container initial=’0′ mode=’accordion’ sort=”]
    [av_toggle title=’Humeral Cuff with 2.5 lb Weight 2′ tags=”]

    [/av_toggle]

    [/av_toggle_container]

    [av_hr class=’invisible’ height=’25’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_heading tag=’h1′ padding=’10’ heading=’Conclusion’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]

    [av_textblock size=” font_color=” color=”]
    Since the Humeral Cuff can withstand the weight equivalent of the prosthetic hand and prosthetic arm without it’s grasp on the arm slipping, then it is able to be used as an arm attachment module instead of an over the shoulder strap system that was used last semester.
    [/av_textblock]

  • S17 Prosthetic Arm: Iteration of the Arm Design

    S17 Prosthetic Arm: Iteration of the Arm Design

    [av_image src=’/wp-content/uploads/2017/05/ArmAssemble-6-158×300.png’ attachment=’25297′ attachment_size=’medium’ align=’center’ styling=” hover=” link=” target=” caption=” font_size=” appearance=” overlay_opacity=’0.4′ overlay_color=’#000000′ overlay_text_color=’#ffffff’ animation=’no-animation’][/av_image]

    [av_heading tag=’h3′ padding=’10’ heading=’Spring 2017 Prosthetic Arm: Iteration of the Arm Design’ color=” style=’blockquote classic-quote’ custom_font=” size=’24’ subheading_active=’subheading_below’ subheading_size=’15’ custom_class=”]
    The Robot Company | CEO Professor Gary Hill
    [/av_heading]

    [av_textblock size=” font_color=” color=”]

    Blog Post created by Project Manager | Bianca Esquivel

    Project Test Executed by Manufacturing and Design Engineer | Cedric Yannick Mbetga

    [/av_textblock]

    [av_heading tag=’h1′ padding=’10’ heading=’Preliminary Information’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]

    [av_icon_box position=’left’ boxed=” icon=’ue864′ font=’entypo-fontello’ title=’Test Objective’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    Purpose: To come up with the appropriate model while meeting L1 requirements.  

    Aim: After the first prototype was printed, the space for the servo was too small. Therefore, this process allow us to solve the problem and redesign the arm to allow for more space.
    [/av_icon_box]

    [av_icon_box position=’left’ boxed=” icon=’ue856′ font=’entypo-fontello’ title=’Materials’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]

    • Solidworks Software Program
    • 3D Printer
    • Blue 3mm PLA

    [/av_icon_box]

    [av_heading heading=’Test Set Up’ tag=’h1′ style=’blockquote modern-quote’ size=’20’ subheading_active=” subheading_size=’15’ padding=’10’ color=” custom_font=”][/av_heading]

    [av_textblock size=” font_color=” color=”]
    Solidworks Design: Lower Forearm

    Solidworks Design: Lower Forearm NEW

    Solidworks Design: Wrist Base

    Solidworks Design: Wrist Base NEW

    Solidworks Design: Wrist

    Solidworks Design: Wrist NEW

    Solidworks Design: Full Arm
    [/av_textblock]

    [av_heading heading=’Results’ tag=’h1′ style=’blockquote modern-quote’ size=’20’ subheading_active=” subheading_size=’15’ padding=’10’ color=” custom_font=”][/av_heading]

    [av_textblock size=” font_color=” color=”]
    For the Lower Forearm Preliminary Model (Model 1): We attempted to fit the Servo in the lower forearm, BUT THERE WAS NO SPACE. Therefore, the design needed to change.

    For the Lower Forearm Model 2: The lower forearm preliminary model was redesigned to allow the servo to fit in it. As observed in the images below, it can now fit.

    For the Wrist Base Preliminary Model (Model 1): The connection mechanism to the lower forearm was not strong enough and broke easily. Therefore, it needed to be redesigned and reprinted to be stronger.

    For the Wrist Base Model 2: The connection system was redesigned to be stronger/sturdier than the original design.

    For the Wrist Preliminary Model (Model 1): It could not meet L1 requirements because it was not strong enough to hold a 1kg mass.

    For the Wrist Model 2: The thickness was increases and the handle fillet was slightly changed so that it could withstand at minimum a 1kg mass.
    [/av_textblock]

    [av_tab_container position=’top_tab’ boxed=’border_tabs’ initial=’1′]
    [av_tab title=’Lower Forearm Model 1′ icon_select=’no’ icon=’ue800′ font=’entypo-fontello’]

    [/av_tab]
    [av_tab title=’Lower Forearm 1 with Servo’ icon_select=’no’ icon=’ue800′ font=’entypo-fontello’]

    [/av_tab]
    [av_tab title=’Lower Forearm Model 2′ icon_select=’no’ icon=’ue800′ font=’entypo-fontello’]

    [/av_tab]
    [av_tab title=’Lower Forearm 2 with Servo’ icon_select=’no’ icon=’ue800′ font=’entypo-fontello’]

    [/av_tab]
    [av_tab title=’Wrist Base Model 1′ icon_select=’no’ icon=’ue800′ font=’entypo-fontello’]

    [/av_tab]
    [av_tab title=’Wrist Base Model 2′ icon_select=’no’ icon=’ue800′ font=’entypo-fontello’]

    [/av_tab]
    [av_tab title=’Wrist Model 1′ icon_select=’no’ icon=’ue800′ font=’entypo-fontello’]

    [/av_tab]
    [av_tab title=’Wrist Model 2′ icon_select=’no’ icon=’ue800′ font=’entypo-fontello’]

    [/av_tab]
    [/av_tab_container]

    [av_heading heading=’Conclusion’ tag=’h1′ style=’blockquote modern-quote’ size=’20’ subheading_active=” subheading_size=’15’ padding=’10’ color=” custom_font=”][/av_heading]

    [av_textblock size=” font_color=” color=”]
    The final assembly of the model of the prosthetic hand was created by the end of this group of design iterations.
    [/av_textblock]

    [av_image src=’/wp-content/uploads/2017/05/ArmAssemble-6-158×300.png’ attachment=’25297′ attachment_size=’medium’ align=’center’ styling=” hover=” link=” target=” caption=” font_size=” appearance=” overlay_opacity=’0.4′ overlay_color=’#000000′ overlay_text_color=’#ffffff’ animation=’no-animation’][/av_image]

  • S17 Prosthetic Arm: Servo Rotation Accelerometer Test

    S17 Prosthetic Arm: Servo Rotation Accelerometer Test

    [av_image src=’/wp-content/uploads/2017/05/AccelCircuit-1-222×300.png’ attachment=’25263′ attachment_size=’medium’ align=’center’ styling=” hover=” link=” target=” caption=” font_size=” appearance=” overlay_opacity=’0.4′ overlay_color=’#000000′ overlay_text_color=’#ffffff’ animation=’no-animation’][/av_image]

    [av_heading tag=’h3′ padding=’10’ heading=’Spring 2017 Prosthetic Arm: Servo Rotation Accelerometer Test’ color=” style=’blockquote classic-quote’ custom_font=” size=’24’ subheading_active=’subheading_below’ subheading_size=’15’ custom_class=”]
    The Robot Company | CEO Professor Gary Hill
    [/av_heading]

    [av_textblock size=” font_color=” color=”]

    Blog Post created by Project Manager | Bianca Esquivel

    Project Test Executed by Mission, Systems, and Test Engineer | Phuong Tran and Electronics and Control Engineer | Mikael Movsisyan

    [/av_textblock]

    [av_heading tag=’h1′ padding=’10’ heading=’Preliminary Information’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]

    [av_icon_box position=’left’ boxed=” icon=’ue864′ font=’entypo-fontello’ title=’Test Objective’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    Purpose: This experiment satisfies the L1 Requirement Integration – Together, the hand and arm shall be able to perform 3 tasks: pick up a cup of water, pick up a Chips Ahoy cookie, and operate a computer mouse to play a game of minesweeper.

    Aim: This experiment follows up on the con-ops presented during the Preliminary Design Review, whereby the wrist should only be allowed to rotate at a specific orientation. The aim of this experiment is to allow wrist rotation only when the arm is pointing down.
    [/av_icon_box]

    [av_icon_box position=’left’ boxed=” icon=’ue856′ font=’entypo-fontello’ title=’Materials’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    Arduino

    SparkFun 2 d.o.f. IMU

    Arduino UNO

    MG996R servo

    EMG sensor
    [/av_icon_box]

    [av_heading tag=’h1′ padding=’10’ heading=’Test Set Up’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]

    [av_textblock size=” font_color=” color=”]

    1. Connect the output of the IMU/accelerometer to the analog pin 1 of the MCU
    2. Connect the output of the EMG sensor to analog pin 0.
    3. Test the accelerometer analog readings and select a threshold value, signifying the accelerometer is pointing in the positive y-axis (as drawn on board).
    4. Modify the FSM code such that in order for transition from state one to occur, both muscle contraction and the correct orientation conditions must be met.

    [/av_textblock]

    [av_toggle_container initial=’0′ mode=’accordion’ sort=”]
    [av_toggle title=’Accelerometer (on Yellow Breadboard) Analog Readings Test’ tags=”]

    [/av_toggle]

    [/av_toggle_container]

    [av_hr class=’invisible’ height=’25’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_heading tag=’h1′ padding=’10’ heading=’Results’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]

    [av_textblock size=” font_color=” color=”]
    Code ran successfully, and the servo rotated only when the arm was pointing down.
    [/av_textblock]

    [av_heading tag=’h1′ padding=’10’ heading=’Conclusion’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]

    [av_textblock size=” font_color=” color=”]
    Experiment satisfies the new requirement from con-ops i.e. allow wrist rotation only in specified orientation. The wrist rotates only when the arm is pointing down and the necessary muscle contraction and subsequent relaxation conditions are met.
    [/av_textblock]

  • S17 Prosthetic Arm: Temperature Sensor Waveform Input Test

    S17 Prosthetic Arm: Temperature Sensor Waveform Input Test

    [av_image src=’/wp-content/uploads/2017/05/TemperatureWaveform-1-300×166.png’ attachment=’25254′ attachment_size=’medium’ align=’center’ styling=” hover=” link=” target=” caption=” font_size=” appearance=” overlay_opacity=’0.4′ overlay_color=’#000000′ overlay_text_color=’#ffffff’ animation=’no-animation’][/av_image]

    [av_heading tag=’h3′ padding=’10’ heading=’Spring 2017 Prosthetic Arm: Temperature Sensor Waveform Input Test’ color=” style=’blockquote classic-quote’ custom_font=” size=’24’ subheading_active=’subheading_below’ subheading_size=’15’ custom_class=”]
    The Robot Company | CEO Professor Gary Hill
    [/av_heading]

    [av_textblock size=” font_color=” color=”]

    Blog Post created by Project Manager | Bianca Esquivel

    Project Test Executed by Mission, Systems, and Test Engineer | Phuong Tran and Electronics and Control Engineer | Mikael Movsisyan

    [/av_textblock]

    [av_heading tag=’h1′ padding=’10’ heading=’Preliminary Information’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]

    [av_icon_box position=’left’ boxed=” icon=’ue864′ font=’entypo-fontello’ title=’Test Objective’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    Purpose: This experiment satisfies the L1.4 Requirement of Safety – The operating temperature of the prosthetic arm shall not exceed 50 degrees Celsius for safety reasons.
    Aim: Test the input of an analog through-hole LM34 temperature sensor and obtain the results as a waveform.
    [/av_icon_box]

    [av_icon_box position=’left’ boxed=” icon=’ue856′ font=’entypo-fontello’ title=’Materials’ link=” linktarget=” linkelement=” font_color=” custom_title=” custom_content=” color=” custom_bg=” custom_font=” custom_border=”]
    Basic Stamp Board from EE370L with heater circuit

    StampPlot Pro

    Arduino UNO
    [/av_icon_box]

    [av_heading tag=’h1′ padding=’10’ heading=’Test Set Up’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]

    [av_textblock size=” font_color=” color=”]

    1. Connect ground of BasicStamp to ground of Arduino UNO
    2. Connect output of LM34 to analog pin of MCU
    3. Use StampPlot Pro Manual Incubator macro to turn on heater
    4. Read the analog input from the temperature sensor using the serial plotter feature of Arduino IDE
    5. Heat to 122F i.e. 50oC (as is the safety threshold, at which the sleep ISR should be triggered)

    [/av_textblock]

    [av_toggle_container initial=’0′ mode=’accordion’ sort=”]
    [av_toggle title=’Basic Stamp Temperature Sensor Circuit’ tags=”]

    [/av_toggle]

    [/av_toggle_container]

    [av_hr class=’invisible’ height=’25’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_heading tag=’h1′ padding=’10’ heading=’Results’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]

    [av_textblock size=” font_color=” color=”]
    The analog temperature from the LM34 sensor was read successfully and it reached the desired threshold.
    [/av_textblock]

    [av_toggle_container initial=’0′ mode=’accordion’ sort=”]
    [av_toggle title=’ Arduino IDE Serial Plotter overlaying Stamp-Plot Pro Graph’ tags=”]

    [/av_toggle]

    [/av_toggle_container]

    [av_hr class=’invisible’ height=’25’ shadow=’no-shadow’ position=’center’ custom_border=’av-border-thin’ custom_width=’50px’ custom_border_color=” custom_margin_top=’30px’ custom_margin_bottom=’30px’ icon_select=’yes’ custom_icon_color=” icon=’ue808′ font=’entypo-fontello’]

    [av_heading tag=’h1′ padding=’10’ heading=’Conclusion’ color=” style=’blockquote modern-quote’ custom_font=” size=’20’ subheading_active=” subheading_size=’15’ custom_class=”][/av_heading]

    [av_textblock size=” font_color=” color=”]
    The surface-mount LM34 analog of the through-hole component is expected to behave similarly, with an output directly proportional to the Fahrenheit temperature.
    [/av_textblock]